準(zhǔn)費(fèi)米能級分裂(Quasi-Fermi Level Splitting,QFLS)是太陽能研究中一個重要的物理參數(shù),廣泛應(yīng)用于半導(dǎo)體材料與光電器件的性能評估。QFLS描述了在非平衡態(tài)下,電子與空穴的準(zhǔn)費(fèi)米能級之間的能量差,并與光伏器件的開路電壓(Open-Circuit Voltage,VOC)以及光電轉(zhuǎn)換效率(Power Conversion Efficiency,PCE)密切相關(guān)。本文旨在全面探討QFLS的基本概念和定義、背景與重要性、測量方法、計算公式及其在光伏器件中的應(yīng)用,并分析其未來發(fā)展方向。
準(zhǔn)費(fèi)米能級分裂QFLS是固態(tài)物理學(xué)和半導(dǎo)體器件研究中的一個重要概念,用于描述非平衡態(tài)下電子和空穴的能級分布。在平衡態(tài)下,半導(dǎo)體的費(fèi)米能級(Fermi Level,EF)表示電子和空穴的化學(xué)勢相等。然而,在光照或外加電壓的作用下,半導(dǎo)體內(nèi)部會產(chǎn)生光生載流子(電子和空穴),導(dǎo)致電子和空穴的分布不再遵循平衡態(tài)的費(fèi)米-狄拉克分布,從而形成兩個獨(dú)立的準(zhǔn)費(fèi)米能級,分別為電子的準(zhǔn)費(fèi)米能級(EF,e)和空穴的準(zhǔn)費(fèi)米能級(EF,h)。這種分裂現(xiàn)象的形成主要受到以下因素的影響:
● 光生載流子的產(chǎn)生:當(dāng)半導(dǎo)體材料受到光照時,光子能量大于材料的禁帶寬度(Bandgap)時,會激發(fā)電子從價帶躍遷到導(dǎo)帶,形成電子-空穴對。這些光生載流子的濃度增加,導(dǎo)致電子和空穴的化學(xué)勢發(fā)生改變。
● 載流子的復(fù)合:光生載流子在材料內(nèi)部會經(jīng)歷輻射復(fù)合(Radiative Recombination)和非輻射復(fù)合(Non-Radiative Recombination)。這些復(fù)合過程會影響準(zhǔn)費(fèi)米能級的分布,特別是非輻射復(fù)合會降低準(zhǔn)費(fèi)米能級分裂的幅度。
● 外加電壓的影響:在光伏器件中,外加電壓會改變載流子的分布,進(jìn)一步影響準(zhǔn)費(fèi)米能級的分裂。例如,在太陽能電池的開路條件下,載流子濃度達(dá)到最大,準(zhǔn)費(fèi)米能級分裂也達(dá)到最大值。
● 電子準(zhǔn)費(fèi)米能級(EF,e)電子準(zhǔn)費(fèi)米能級(EF,e)是描述非平衡態(tài)下導(dǎo)帶中電子分布的能級。當(dāng)半導(dǎo)體材料受到光照或外加電壓時,光生載流子(電子和空穴)會被激發(fā),導(dǎo)致電子的分布偏離平衡態(tài)。此時,電子的能量分布不再由單一的費(fèi)米-狄拉克分布描述,而是由電子準(zhǔn)費(fèi)米能級(EF,e)來表征。數(shù)學(xué)上,電子的分布可以表示為:
fe(E) = 1 / (1 + exp((E - EF,e) / kT))
其中,E為電子的能量,k為玻爾茲曼常數(shù),T為絕對溫度,EF,e為電子準(zhǔn)費(fèi)米能級。EF,e的大小取決于光生電子的濃度以及材料的導(dǎo)帶態(tài)密度(Nc)。電子準(zhǔn)費(fèi)米能級的提升通常意味著光生電子濃度的增加,這對于光伏器件的性能至關(guān)重要。例如,在高效鈣鈦礦太陽能電池中,EF,e的提升可以顯著提高開路電壓(VOC)。
● 空穴準(zhǔn)費(fèi)米能級(EF,h)空穴準(zhǔn)費(fèi)米能級(EF,h)是描述非平衡態(tài)下價帶中空穴分布的能級。與電子準(zhǔn)費(fèi)米能級類似,當(dāng)半導(dǎo)體材料受到光照或外加電壓時,價帶中的空穴分布也會偏離平衡態(tài),此時由空穴準(zhǔn)費(fèi)米能級(EF,h)來描述。數(shù)學(xué)上,空穴的分布可以表示為:
fh(E) = 1 - 1 / (1 + exp((E - EF,h) / kT))
其中,E為空穴的能量,EF,h為空穴準(zhǔn)費(fèi)米能級。EF,h的大小取決于光生空穴的濃度以及材料的價帶態(tài)密度(Nv)??昭?zhǔn)費(fèi)米能級的降低通常意味著光生空穴濃度的增加。對于光伏器件而言,EF,h的變化與界面復(fù)合和材料缺陷密切相關(guān)。例如,在鈣鈦礦太陽能電池中,通過界面鈍化技術(shù)可以有效提升EF,h,從而減少非輻射復(fù)合損失。
數(shù)學(xué)上,QFLS可以表示為:QFLS = EF,e - EF,h
其中,EF,e 和 EF,h 分別是電子和空穴的準(zhǔn)費(fèi)米能級。在光伏器件中,QFLS 是開路電壓Voc的理論上限,并且與光生載流子的產(chǎn)生效率和復(fù)合行為密切相關(guān)。根據(jù)理論,VOC 可以表示為:
VOC = QFLS / q
其中,q 是電子的基本電荷。QFLS 的大小取決于材料的內(nèi)部特性(如缺陷密度和非輻射復(fù)合速率)以及外部條件(如光照強(qiáng)度和溫度)。在理想狀態(tài)下,QFLS 僅受輻射復(fù)合的影響,這被稱為輻射極限(Radiative Limit)。然而,在實(shí)際器件中,非輻射復(fù)合會降低 QFLS,從而導(dǎo)致開路電壓損失。
QFLS 的概念最早源于20世紀(jì)中期的半導(dǎo)體物理學(xué)研究。隨著量子力學(xué)和固態(tài)物理學(xué)的發(fā)展,科學(xué)家提出了準(zhǔn)費(fèi)米能級的概念,用于描述非平衡態(tài)下的載流子分布。在早期的研究中,QFLS 被用作分析光生載流子行為的理論工具,并逐漸應(yīng)用于光電器件的性能評估。
在20世紀(jì)末,QFLS 開始被廣泛應(yīng)用于光伏器件的研究中。研究表明,QFLS 與器件的 VOC 和 PCE 密切相關(guān),并且可以用于量化非輻射復(fù)合損失。特別是在薄膜太陽能電池(如 CIGS 和鈣鈦礦太陽能電池)中,QFLS 被用來評估材料內(nèi)部和界面處的復(fù)合行為,從而指導(dǎo)材料和器件的優(yōu)化。
隨著測量技術(shù)的進(jìn)步,科學(xué)家可以更準(zhǔn)確地測量 QFLS,并將其與材料的光電性能直接關(guān)聯(lián)。例如,光致發(fā)光量子產(chǎn)率(PLQY)和電致發(fā)光量子產(chǎn)率(ELQY)技術(shù)的發(fā)展,使得 QFLS 的測量精度和應(yīng)用范圍顯著提升。此外,現(xiàn)代技術(shù)還使得 QFLS 的研究從單層材料擴(kuò)展到多層結(jié)構(gòu)和異質(zhì)結(jié)構(gòu),為新型太陽能材料(如鈣鈦礦和有機(jī)半導(dǎo)體)的開發(fā)拓展應(yīng)用潛能。
QFLS 是光伏器件中開路電壓 VOC 的理論上限,這使其成為評估器件性能的關(guān)鍵參數(shù)。VOC 是光伏器件在無電流流動時的最大電壓,其大小直接影響光電轉(zhuǎn)換效率(Power Conversion Efficiency, PCE)。更高的 QFLS 代表著更高的 VOC,進(jìn)而提升器件的效率。在理想狀態(tài)下,VOC 僅受輻射復(fù)合的限制。然而,實(shí)際器件中的非輻射復(fù)合(如缺陷態(tài)復(fù)合和界面復(fù)合)會導(dǎo)致 QFLS 與 VOC 之間的差距,這種差距反映了器件內(nèi)部的能量損失。
Pseudo J-V 曲線提供一種理想化的性能評估工具,幫助研究人員排除串聯(lián)電阻等外部因素的影響,專注于器件的內(nèi)在物理特性。其重要性體現(xiàn)在以下幾個方面:
● 效率潛力評估:Pseudo J-V 曲線能準(zhǔn)確量化器件的理想填充因子(Pseudo FF)和潛在效率,并與實(shí)際 J-V 曲線進(jìn)行比較,揭示損失機(jī)制。
● 非輻射復(fù)合損失分析:研究人員通過對比QFLS與VOC的差距,能夠精確量化材料中的非輻射復(fù)合損失。
● 材料與界面改進(jìn):這項(xiàng)技術(shù)在鈣鈦礦太陽能電池及其他新興太陽能領(lǐng)域已有廣泛應(yīng)用,研究團(tuán)隊利用它來優(yōu)化界面鈍化策略并調(diào)整材料結(jié)構(gòu),大幅提升實(shí)際器件的性能表現(xiàn)。
QFLS 是量化非輻射復(fù)合損失的重要工具。非輻射復(fù)合是光伏器件中能量損失的主要來源之一,會降低光生載流子的壽命和濃度,從而降低VOC 和 PCE。通過測量 QFLS 與 VOC 之間的差距,可以識別非輻射復(fù)合的主要來源,例如:
● 缺陷態(tài)復(fù)合:由材料內(nèi)部的缺陷或雜質(zhì)引起。
● 界面復(fù)合:發(fā)生在活性層與傳輸層之間的界面處。
QFLS的高低直接反映了太陽能材料中光生載流子能被收集的效能。當(dāng)QFLS值較高時,系統(tǒng)中的能量損耗便相對減少,能提升太陽能電池的整體轉(zhuǎn)換效率。例如,在鈣鈦礦太陽能電池中,QFLS的提升可以顯著減少非輻射復(fù)合損失,從而提高光電轉(zhuǎn)換效率(PCE)。此外,QFLS還可以用于量化不同材料或結(jié)構(gòu)的非輻射復(fù)合損失,從而指導(dǎo)材料改性和界面鈍化技術(shù)的應(yīng)用。
通過測量QFLS,可以評估材料的內(nèi)在性能和界面處的復(fù)合損失。在非器件態(tài)下,QFLS的測量可以避免電極或其他器件的影響,直接反映材料的本征性能。例如,光致發(fā)光量子效率(PLQY)和電致發(fā)光量子效率(ELQY)技術(shù)已被廣泛用于QFLS的測量,并為材料的優(yōu)化提供了重要依據(jù)。
輻射極限(Radiative Limit)是光伏器件性能的理論上限,指在僅考慮輻射復(fù)合的情況下,QFLS 和 VOC 的最大值。在輻射極限下,所有光生載流子都通過輻射復(fù)合釋放能量,沒有非輻射復(fù)合損失。然而,在實(shí)際器件中,非輻射復(fù)合是不可避免的,主要包括以下幾種類型:
● 缺陷態(tài)復(fù)合:由于材料內(nèi)部的缺陷或雜質(zhì),電子和空穴會通過缺陷態(tài)進(jìn)行復(fù)合,導(dǎo)致能量損失。
● 界面復(fù)合:在多層結(jié)構(gòu)的光伏器件中,界面處的能帶不連續(xù)或缺陷會導(dǎo)致載流子的復(fù)合,這是非輻射復(fù)合的重要來源。
● 俄歇復(fù)合:在高載流子濃度下,電子和空穴的能量會通過與另一個載流子的碰撞傳遞,這種過程也會導(dǎo)致非輻射復(fù)合。
非輻射復(fù)合的存在會降低 QFLS 和 VOC,從而限制光伏器件的性能。因此,減少非輻射復(fù)合損失是提升光伏器件效率的關(guān)鍵。
Pseudo J-V 曲線是基于 QFLS 數(shù)據(jù)生成的理想化電流-電壓特性曲線。通過測量不同光強(qiáng)下的 QFLS 值,可以模擬出在無串聯(lián)電阻影響下的器件性能。這種方法能幫助研究人員量化非輻射復(fù)合損失、界面缺陷以及潛在的填充因子 (FF) 損失,從而評估器件的效率潛力。
由于QFLS無法直接測量,科學(xué)家們發(fā)展了多種間接測量和計算方法。本章將詳細(xì)介紹幾種主要的QFLS測量方法,包括光致發(fā)光量子產(chǎn)率(PLQY)測量、電致發(fā)光量子產(chǎn)率(ELQY)測量、Pseudo J-V曲線、高能尾部擬合方法、電子漂移-擴(kuò)散模型以及電子結(jié)構(gòu)計算(第一原理)。
光致發(fā)光量子產(chǎn)率(Photoluminescence Quantum Yield, PLQY)是測量QFLS的常用方法之一,其基本原理是通過測量樣品吸收的光子數(shù)與發(fā)射的光子數(shù)之比,來推導(dǎo)光生載流子的輻射復(fù)合效率,進(jìn)而計算QFLS。
1.激發(fā)樣品:使用激光或光源照射樣品,激發(fā)光生載流子。
2.收集光致發(fā)光信號:通過高靈敏度的光譜儀收集樣品的光致發(fā)光信號,并測量其光通量密度(Φlum)
3.計算PLQY:根據(jù)樣品的吸收率(a)和激發(fā)光子通量密度(Φexc),計算PLQY,公式如下:
ηPLQY = Φlum / (Φexc · a)
其中:Φlum為光致發(fā)光的光通量密度,Φexc為激發(fā)光子通量密度,a為樣品的吸收率。
4.推導(dǎo)QFLS:利用以下公式計算QFLS:
QFLS = kT · ln(ηPLQY)
其中,k為玻爾茲曼常數(shù),T為絕對溫度,ηPLQY為光致發(fā)光量子產(chǎn)率。
● 非破壞性測量,適用于多種材料,包括鈣鈦礦、硅和有機(jī)半導(dǎo)體。
● 可直接量化輻射復(fù)合效率,為材料性能評估提供重要依據(jù)。
● 測量結(jié)果可能受樣品表面缺陷和界面復(fù)合影響。
● 需要高靈敏度的光學(xué)設(shè)備,并且對測量條件的穩(wěn)定性要求較高。
光焱科技Enlitech將推出新一代QFLS測量設(shè)備!能呈現(xiàn)準(zhǔn)費(fèi)米能級分裂的可視化圖像,同時提供Pseudo JV曲線測量功能,幫助研究人員預(yù)測太陽能材料的理論極限及iVOC值。想探索您材料的真實(shí)潛力?立即與我們聯(lián)系獲取更多專業(yè)信息!
電致發(fā)光量子產(chǎn)率(Electroluminescence Quantum Yield, ELQY)是另一種測量QFLS的方法,特別適用于已制備的光電器件。其原理類似于PLQY,但激發(fā)載流子的方式是通過外加電壓或電流。
1.施加電壓或電流:對器件施加電壓或電流,激發(fā)載流子復(fù)合。
2.收集電致發(fā)光信號:使用光譜儀測量器件的電致發(fā)光信號,并計算ELQY。
3.計算QFLS:使用與PLQY相同的公式計算QFLS。
● 適用于實(shí)際器件的性能評估。
● 可直接反映器件內(nèi)部的非輻射復(fù)合行為。
● 測量結(jié)果可能受器件結(jié)構(gòu)和界面影響。
● 需要穩(wěn)定的電流源和高靈敏度的光學(xué)檢測設(shè)備。
1.測量 QFLS 數(shù)據(jù):使用光致發(fā)光量子產(chǎn)率(PLQY)或電致發(fā)光量子產(chǎn)率(ELQY)測量不同光強(qiáng)下的 QFLS 值。這些數(shù)據(jù)可以通過光譜高能尾擬合或其他算法計算得到。
2.計算復(fù)合電流密度 Jrec:根據(jù) QFLS 值,計算復(fù)合電流密度,公式如下:
Jrec = J0 · (e(q · QFLS) / (kT) - 1)
其中,J0 是暗飽和電流密度,q 是電子電荷,k 是玻爾茲曼常數(shù),T 是溫度。
3.生成 Pseudo J-V 曲線:將復(fù)合電流密度與 QFLS 值作圖,并減去與電壓無關(guān)的光生電流(Jgen)密度,即可生成 Pseudo J-V 曲線,提供一種理想化的性能評估工具,幫助研究人員排除串聯(lián)電阻等外部因素的影響,專注于器件的內(nèi)在物理特性。其重要性體現(xiàn)在以下幾個方面:
J = Jgen - Jrec
該曲線反映了理想條件下的器件性能,幫助研究人員了解光伏器件的內(nèi)部物理機(jī)制。
高能尾部擬合方法是一種基于光致發(fā)光光譜的技術(shù),用于精確計算QFLS。該方法通過擬合光譜的高能部分,推導(dǎo)出載流子的能量分布。
1.獲取光譜數(shù)據(jù):使用光譜儀獲取樣品的光致發(fā)光光譜。
2.擬合高能尾部:擬合光譜的高能尾部,計算光子能量與光通量密度的關(guān)系。
3.推導(dǎo)QFLS:根據(jù)擬合結(jié)果,使用以下公式計算QFLS:
QFLS = (q / kT) · ln(Φlum / (Φexc · a))
其中,q為電子電荷,a為樣品的吸收率,T為絕對溫度,Φlum為光致發(fā)光的光通量密度,Φexc為激發(fā)光子通量密度,a為樣品的吸收率。
● 高精度,適用于研究材料內(nèi)部的能量分布。
● 可用于分析非輻射復(fù)合損失。
● 需要高分辨率的光譜儀。
● 擬合結(jié)果可能受樣品均勻性影響。
電子漂移-擴(kuò)散模型是一種理論計算方法,通過模擬載流子的漂移和擴(kuò)散行為,來估算QFLS。
1.建立數(shù)學(xué)模型:根據(jù)材料的物理參數(shù)(如載流子壽命、擴(kuò)散系數(shù)等),建立漂移-擴(kuò)散模型。
2.模擬載流子行為:模擬光生載流子的產(chǎn)生、復(fù)合和傳輸過程。
3.計算QFLS:根據(jù)模擬結(jié)果,推導(dǎo)出QFLS。
● 適用于研究材料內(nèi)部的載流子動力學(xué)。
● 可結(jié)合實(shí)驗(yàn)數(shù)據(jù)進(jìn)行校準(zhǔn)。
● 需要詳細(xì)的材料參數(shù)。
● 模型的準(zhǔn)確性依賴于假設(shè)條件。
第一原理計算(如密度泛函理論,DFT)可用于模擬材料的電子結(jié)構(gòu),從而計算QFLS。
1.模擬電子結(jié)構(gòu):使用第一原理方法模擬材料的電子結(jié)構(gòu)。
2.計算準(zhǔn)費(fèi)米能級:計算導(dǎo)帶和價帶中的準(zhǔn)費(fèi)米能級位置。
3.推導(dǎo)QFLS:根據(jù)模擬結(jié)果,計算QFLS。
● 適用于研究新材料的理論性能。
● 可提供原子尺度的詳細(xì)信息。
● 計算量大,對計算資源要求高。
● 需要高水平的理論知識。
● 溫度的影響溫度對QFLS的計算有顯著影響,因?yàn)閗T直接影響公式中的對數(shù)項(xiàng)。測量時需保持樣品在穩(wěn)定的溫度條件下,并考慮溫度對載流子復(fù)合行為的影響。
● 非輻射復(fù)合的校正非輻射復(fù)合會降低PLQY或ELQY,導(dǎo)致QFLS的低估。需要通過校正非輻射復(fù)合損失來提高準(zhǔn)確性,例如結(jié)合漂移-擴(kuò)散模型進(jìn)行校正。
● 吸收率的準(zhǔn)確測定樣品的吸收率直接影響光子通量的計算,需通過實(shí)驗(yàn)或理論模型準(zhǔn)確測定。吸收率的誤差可能導(dǎo)致QFLS的計算偏差。
● 光譜校準(zhǔn)的必要性測量系統(tǒng)需進(jìn)行絕對光子數(shù)校準(zhǔn),以確保光譜數(shù)據(jù)的準(zhǔn)確性。高能尾部擬合方法的先決條件是將整個測量系統(tǒng)校準(zhǔn)為絕對光子數(shù)。
● 測量條件的穩(wěn)定性確保激光強(qiáng)度和樣品溫度穩(wěn)定,避免測量誤差。測量條件的不穩(wěn)定可能導(dǎo)致QFLS計算結(jié)果的波動。
● 光譜儀的靈敏度使用高靈敏度的光譜儀,特別是在測量高能尾部時。光譜儀的靈敏度不足可能導(dǎo)致高能尾部擬合的精度下降。
● 樣品均勻性測量前需檢查樣品的均勻性,避免局部缺陷影響結(jié)果。樣品的不均勻性可能導(dǎo)致QFLS的計算偏差。
● 非輻射復(fù)合的校正結(jié)合漂移-擴(kuò)散模型或其他理論方法,校正非輻射復(fù)合對QFLS的影響。非輻射復(fù)合的校正是提高QFLS計算準(zhǔn)確性的關(guān)鍵。
● 非器件態(tài)表征在鈣鈦礦太陽能電池的早期開發(fā)階段,非器件態(tài)表征是一種有效的研究方法。這種方法可以直接研究材料的本征性能,避免器件結(jié)構(gòu)對測量結(jié)果的影響。例如,德國HySPRINT實(shí)驗(yàn)室利用光致發(fā)光量子效率(PLQY)測量技術(shù),對不同制備工藝下的鈣鈦礦薄膜進(jìn)行了逐層評估,揭示了不同膜層對QFLS的影響。隨著膜層數(shù)量的增加,QFLS呈現(xiàn)下降趨勢,這主要是由于膜層間的界面復(fù)合損失所致。此外,PLQY mapping技術(shù)還可以用于分析鈣鈦礦薄膜的均勻性和缺陷分布。例如,在不同光照強(qiáng)度下進(jìn)行PLQY mapping測試,可以揭示鈣鈦礦薄膜內(nèi)部的光電轉(zhuǎn)換特性和復(fù)合行為。
光焱科技Enlitech即將推出全新QFLS測量儀器!這款儀器采用先進(jìn)的QFLS成像技術(shù),不僅能迅速捕捉材料分布的均勻性,更能分層解析各種材料的性能,一目了然地掌握每一個細(xì)節(jié)。想了解這個儀器,歡迎聯(lián)系我們了解更多!
● QFLS與開路電壓的關(guān)系研究表明,鈣鈦礦材料的QFLS通常低于其理論輻射極限,這主要是由于非輻射復(fù)合和界面能量損失所致。例如,波茨坦大學(xué)的研究發(fā)現(xiàn),鈣鈦礦中的QFLS顯著低于其所有光強(qiáng)下的輻射極限,并且VOC通常低于QFLS,這違反了Shockley-Queisser理論的假設(shè)。這種偏移表明,非輻射復(fù)合和界面缺陷是限制VOC的主要因素。此外,研究還發(fā)現(xiàn),通過優(yōu)化鈣鈦礦層與電子傳輸層(ETL)或空穴傳輸層(HTL)之間的界面,可以顯著提升QFLS。例如,通過引入二胺分子修飾鈣鈦礦表面,研究人員成功將QFLS提升了90 meV,從而使1.79 eV的鈣鈦礦太陽能電池達(dá)到1.33 V的VOC,并實(shí)現(xiàn)了超過19%的功率轉(zhuǎn)換效率(PCE)。資料來源:Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer
● 材料優(yōu)化研究人員通過引入多功能聚合物添加劑來鈍化鈣鈦礦薄膜中的缺陷,顯著提升了QFLS。例如,青島能源研究所的研究顯示,通過引入一種通用的多功能聚合物添加劑,可以同時鈍化陽離子和陰離子缺陷,從而將鈣鈦礦薄膜的QFLS提升至接近Shockley-Queisser極限的95.5%。資料來源:Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer另一項(xiàng)研究則通過調(diào)整鈣鈦礦層的結(jié)構(gòu)來提升QFLS。例如,通過設(shè)計2D/3D鈣鈦礦結(jié)構(gòu),研究人員成功實(shí)現(xiàn)了更高的QFLS和更低的非輻射復(fù)合損失。這種結(jié)構(gòu)的量子限域效應(yīng)有助于提升電子和空穴的分離效率,從而提高整體器件性能。資料來源:Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model
● 納米接觸點(diǎn)結(jié)構(gòu)中的QFLS:在納米接觸點(diǎn)結(jié)構(gòu)中,QFLS被用來描述有限偏壓操作下的非平衡態(tài)。例如,在分子結(jié)構(gòu)的納米接觸點(diǎn)中,QFLS的分裂與非線性靜電勢降和非對稱電阻偶極分布有高度的關(guān)聯(lián)。研究表明,通過調(diào)整納米接觸點(diǎn)結(jié)構(gòu)的幾何形狀和材料組成,可以顯著影響QFLS。例如,在單分子結(jié)構(gòu)中,QFLS的分裂與載流子的傳輸行為密切相關(guān)。這種現(xiàn)象可以用于設(shè)計高效的納米光電器件。資料來源:High surface recombination velocity limits Quasi-Fermi level splitting in kesterite absorbers
● 表面復(fù)合對QFLS的影響:表面復(fù)合是影響QFLS的重要因素之一。在Cu2ZnSnSe4吸收層的研究中,研究人員發(fā)現(xiàn),通過化學(xué)清洗和退火處理,可以顯著改變表面復(fù)合速率,從而提升QFLS。例如,研究人員利用化學(xué)清洗成功去除了吸收層表面的反轉(zhuǎn)層,從而顯著提升了QFLS。然而,當(dāng)吸收層在空氣中退火后,表面反轉(zhuǎn)層再次形成,導(dǎo)致QFLS下降。研究還發(fā)現(xiàn),表面處理的效果與退火溫度密切相關(guān)。例如,在200°C以上的高溫退火會導(dǎo)致吸收層表面的變化,從而影響QFLS。資料來源:High-quality perovskite films prepared by nucleus epitaxial growth for efficient and stable perovskite solar cells
● 損耗來源診斷:QFLS是分析光伏器件內(nèi)部能量損耗的重要工具。例如,通過比較QFLS與理論輻射極限的差距,可以量化非輻射復(fù)合損失。研究表明,界面處的能量損失是限制QFLS的主要因素之一。例如,在鈣鈦礦太陽能電池中,界面缺陷和能帶不匹配會導(dǎo)致顯著的非輻射復(fù)合損失。
● 隱含開路電壓(iVOC)測量:隱含開路電壓是一種基于QFLS的非接觸式表征方法,用于評估器件的潛在性能。例如,通過光致發(fā)光或電致發(fā)光量子效率測量,可以計算iVOC,從而揭示器件內(nèi)部的復(fù)合行為。研究表明,iVOC的測量結(jié)果與QFLS密切相關(guān)。例如,在有機(jī)光伏器件中,iVOC的測量可以用于量化非輻射復(fù)合損失,并指導(dǎo)器件結(jié)構(gòu)的優(yōu)化。
光焱科技Enlitech即將推出:創(chuàng)新QFLS測量儀器,能夠提供費(fèi)米能級分布的完整可視圖像!這個創(chuàng)新設(shè)備將可測量Pseudo JV曲線,幫助研究人員準(zhǔn)確預(yù)測iVOC值與材料理論效率極限。對提升您的太陽能研究感興趣?歡迎聯(lián)系我們,了解更多信息!
● 有機(jī)光伏器件中的QFLS:在有機(jī)光伏器件中,QFLS被用來量化載流子的復(fù)合行為。例如,通過在操作條件下直接測量QFLS,研究人員可以全面表征不同能量損耗的貢獻(xiàn)。研究表明,有機(jī)光伏器件的QFLS與其內(nèi)部的非輻射復(fù)合密切相關(guān)。例如,通過優(yōu)化活性層的結(jié)構(gòu),可以顯著提升QFLS,從而提高器件的光電轉(zhuǎn)換效率。
● 能帶結(jié)構(gòu)分析QFLS被用于研究半導(dǎo)體材料的能帶結(jié)構(gòu)。例如,通過測量光致發(fā)光光譜,可以分析光照或偏壓條件下材料能帶結(jié)構(gòu)的變化。研究表明,QFLS的測量研究結(jié)果可以用于揭示材料內(nèi)部的能量分布。例如,在鈣鈦礦材料中,QFLS的變化與其能帶結(jié)構(gòu)的調(diào)整密切相關(guān)。
● 載流子動力學(xué)的研究QFLS還被用于研究載流子的動力學(xué)行為。例如,通過測量QFLS,可以獲得載流子的壽命和復(fù)合速率等關(guān)鍵參數(shù)。研究表明,QFLS的測量結(jié)果可以用于分析載流子的傳輸行為。例如,在有機(jī)光伏器件中,QFLS的變化與載流子的傳輸效率密切相關(guān)。
● 評估光伏器件性能:作為描述光生載流子非平衡態(tài)能量分布的核心參數(shù),QFLS直接影響光伏器件的開路電壓(VOC)和光電轉(zhuǎn)換效率(PCE)。研究表明,QFLS越高,表示材料內(nèi)部的非輻射復(fù)合損耗越低,光伏器件的潛在效率越高。在鈣鈦礦太陽能電池中,QFLS的測量已被廣泛用于評估材料的內(nèi)部質(zhì)量和界面性能。例如,通過光致發(fā)光量子產(chǎn)率(PLQY)測量,研究人員可以量化材料內(nèi)部的非輻射復(fù)合行為,并進(jìn)一步推導(dǎo)出QFLS值。這些數(shù)據(jù)為光伏器件的優(yōu)化提供了重要依據(jù)。此外,QFLS還能幫助識別光伏器件中的能量損耗來源,例如界面缺陷和材料內(nèi)部的缺陷態(tài)復(fù)合,從而為提升器件性能提供具體的改進(jìn)方向。
● 表征非輻射復(fù)合損耗:非輻射復(fù)合是光伏器件性能下降的主要原因之一,而QFLS則是量化非輻射復(fù)合損耗的關(guān)鍵指標(biāo)。當(dāng)QFLS與理論輻射極限之間存在顯著差距時,通常表明材料內(nèi)部或界面處存在較高的非輻射復(fù)合損耗。例如,在鈣鈦礦太陽能電池中,研究發(fā)現(xiàn)界面處的非輻射復(fù)合是導(dǎo)致QFLS下降的主要因素之一。通過引入功能性界面層或缺陷鈍化技術(shù),可以顯著降低非輻射復(fù)合損耗,從而提升QFLS值。此外,QFLS的測量還能揭示不同制備工藝對材料非輻射復(fù)合行為的影響,為工藝優(yōu)化提供了量化依據(jù)。
● 隱含開路電壓(iVOC)的預(yù)測:QFLS與隱含開路電壓(iVOC)之間存在密切的關(guān)系。iVOC是一種基于QFLS的非接觸式表征方法,用于預(yù)測光伏器件的潛在性能。通過光致發(fā)光或電致發(fā)光量子效率的測量,研究人員可以計算出iVOC值,從而評估器件的開路電壓潛力。例如,在鈣鈦礦太陽能電池中,iVOC的測量已被用于量化界面處的能量損耗。研究表明,通過提升QFLS值,可以顯著提高iVOC,從而提升器件的開路電壓和整體效率。
● 材料優(yōu)化:在鈣鈦礦太陽能電池中,通過測量不同制備工藝下的QFLS值,研究人員可以比較各種工藝對材料性能的影響,從而選擇最佳的制備條件。QFLS還能幫助研究人員識別材料中的缺陷態(tài)和界面損耗。例如,通過引入多功能聚合物添加劑或界面修飾技術(shù),可以顯著提升QFLS值,從而提高材料的光電轉(zhuǎn)換效率。
● 提升測量精度與空間分辨率:隨著光伏技術(shù)的快速發(fā)展,對QFLS測量精度和空間分辨率的需求也越來越高。未來的研究應(yīng)致力于開發(fā)更高精度更高空間分辨率的測量技術(shù),以便在納米尺度上表征QFLS的分布。例如,超光譜顯微鏡和高分辨率光譜儀的應(yīng)用,已經(jīng)顯著提升了QFLS測量的精度和分辨率。這些技術(shù)的進(jìn)步將有助于深入研究異質(zhì)結(jié)構(gòu)和多層結(jié)構(gòu)中的QFLS分布,從而為光伏器件的設(shè)計和優(yōu)化提供更詳細(xì)的信息。
● 應(yīng)用于新型太陽能材料:QFLS的研究將進(jìn)一步擴(kuò)展至新型太陽能材料,如寬帶隙鈣鈦礦、量子點(diǎn)和有機(jī)半導(dǎo)體等。這些材料的能帶結(jié)構(gòu)和復(fù)合機(jī)制需要通過QFLS進(jìn)行深入分析。例如,在量子點(diǎn)太陽能電池中,QFLS的測量可以揭示量子點(diǎn)層的能量分布和復(fù)合行為。此外,QFLS還能幫助研究人員理解有機(jī)半導(dǎo)體中的載流子動力學(xué),從而提升器件的穩(wěn)定性和效率。
● 與疊層電池結(jié)合:在疊層電池中,QFLS可以用于優(yōu)化頂層和底層電池的能量匹配,從而實(shí)現(xiàn)更高的效率。例如,在鈣鈦礦/硅疊層電池中,通過測量各層的QFLS值,研究人員可以調(diào)整各層的能帶結(jié)構(gòu)和界面性能,從而提升整體效率。QFLS的測量還能幫助識別疊層電池中的能量損耗來源,為器件的設(shè)計和優(yōu)化提供具體的改進(jìn)方向。
● 界面工程與缺陷鈍化:通過引入功能性界面層或缺陷鈍化技術(shù),可以顯著降低界面處的非輻射復(fù)合損耗,從而提升QFLS值。在鈣鈦礦太陽能電池中,研究人員通過引入二維/三維鈣鈦礦結(jié)構(gòu),顯著提升了界面處的QFLS值,從而提高了器件的開路電壓和效率。
光焱科技Enlitech即將推出QFLS相關(guān)測量儀器,可獲得QFLS image可視圖,了解材料的費(fèi)米能級分布情況;可測得Pseudo JV,了解太陽能材料的iVOC和最佳IV曲線圖,分析材料極限。聯(lián)系我們了解更多信息!